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ABSTRACT

Some workers currently use the Bulirsch-Stoer (BS) extrapolation method to solve ODEs associated
with few-body dynamics, since it is fairly fast and apparently also accurate, while many others are
currently unaware of the utility of the method. This work is a quantitative analysis of the advantages of
the BS method, providing those already “in the know” with confidence in their BS integrators, and
showing others that this method is certainly worth considering when working with small N dynamical
systems. Comparisons are made of different ways of using the method. The results, qualitatively sus-
pected by many users, are quantitatively confirmed as follows: (1) The Bulirsch-Stoer extrapolation
method is very fast and moderately accurate. (2) Regularization of the equations of motion stabilizes
the error behavior of the method and is, of course, essential during close approaches. (3) When applica-
ble, a manifold-correction algorithm, originally developed by Nacozy, reduces numerical errors to the
limits of machine accuracy, and at the surprisingly small cost of approximately 0%—3% in cpu time. In
addition, for the specific case of the restricted three-body problem, even a small eccentricity for the orbit
of the primaries drastically affects the accuracy of integrations, whether regularized or not; the circular
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restricted problem integrates much more accurately, all else being equal.

I. INTRODUCTION

The restricted three-body problem has in the past played
an essential role in many different areas of dynamical astron-
omy, and indications are that this will continue (see, e.g.,
Valtonen 1988). The author has undertaken a study of the
problem of satellite capture (Murison 1989; see also Huang
and Innanen 1983), and the restricted three-body problem is
a useful model with which to start. However, before begin-
ning such a task, one must decide on specific numerical tech-
niques and associated problems.

As the state of the art in computing becomes more ad-
vanced, larger numbers of integrations and longer durations
are attempted. Thus, computational efficiency and accuracy
are becoming ever more important, yet often they are not
paid adequate attention. The author has noticed that a var-
iety of methods are used by others (see Aarseth 1988 for a
review ), but that often little gquantitative information is read-
ily available regarding the accuracy and efficiency of some of
these methods. This can and does lead to unwise choices for
newcomers to small-body dynamics.

Recently, the Bulirsch-Stoer extrapolation method
(Bulirsch and Stoer 1966) has caught the attention of the
“cognoscenti,” appearing to be fast and accurate. But just
how accurate is it? Over what kinds of dynamical motions?
How well can we really trust it? The current feeling is that it
is probably a trustworthy method, at least in few-body dy-
namics—it is certainly pleasingly fast. This paper attempts
to substantiate this feeling, using the restricted three-body
problem as a test model.

The equations of motion of the massless particle of the
restricted three-body problem are in two dimensions, and in
a frame in which the primaries remain stationary (the “ro-
tating—pulsating” frame),
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potential, 7, and r, are the distances of the massless particle
from the primaries 2, and »2, < |, ep is the eccentricity of
the primary orbit, 6 is the true anomaly of
the primaries, and the mass ratio g = »2,/ (2, + 2,). The
independent variable is 6, and distances are scaled to
the (nonconstant) primary separation. The more massive
primary -, is located at (x,y) = ( —,0), and the less
massive primary is at (1 — x,0). The true anomaly & is cho-
sen as the independent variable instead of time, since the
resulting equations (1) submit to regularization and are also
simple and aesthetically pleasing. In addition, in many prob-
lems (for example, satellite capture) the rotating—pulsating
frame of reference is much more intuitive and useful than the
inertial frame.

In the circular case e, = 0, an integral of the motion ex-
18ts:

X2 4£y?_20+C=0. 2)

The nature of this particular dynamical problem requires
high precision in the calculations, especially during long in-
tegrations which occur when studying satellite capture, im-
plying that relatively large amounts of cpu time will be con-
sumed. Later, we will be more specific about the kind of
precision that is necessary. The problem is that a very small
error can become greatly magnified as a calculation pro-
gresses, and soon the result can become meaningless—an
expensive way to waste one’s time. Unfortunately, speed and
accuracy are usually at odds, and we must strike a compro-
mise.

In this paper we consider numerical methods and require-
ments. First, the particular method with which one chooses
to integrate the equations is shown to be very important.
Next, we make use of the Jacobi constant to correct numeri-
cal truncation and roundoff errors in the circular restricted
problem. This method can be applied to any problem in
which constants of the motion exist. Finally, we incorporate
regularization in the equations of motion. The effects of the
various methods and techniques will be compared, using or-
bits in the circular restricted three-body (CRTB) and ellip-
tic restricted three-body (ERTB) problems as test cases.
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II. BS INTEGRATION, REGULARIZATION, AND MANIFOLD
CORRECTION

There are at least three ways to improve speed and accura-
cy in the integration of equations such as Eq. (T). First, use a
fast and efficient algorithm. The Bulirsch-Stoer (BS) extra-
polation method (see Press et al. 1986) is a very fast and
efficient algorithm for solving ordinary differential equa-
tions like Eq. (1). It is also easy to code. Hénon (1969) was
perhaps the first to use the BS method for the restricted
problem, preferring it over Runge-Kutta. Second, take ad-
vantage of integrals of the motion for error checking and
correction. Third, regularize the equations of motion. In the
following, two-body regularization was incorporated (see,
e.g., Stiefel and Scheifele 1970; Bettis and Szebehely 1971;
Murison 1988).

a) Manifold Correction

Nacozy (1971) found a clever way to use constants of the
motion to monitor and correct errors in position and veloc-
ity. When an integral of the equations of motion exists, the
orbit is confined to a surface in phase space. When a numeri-
cal error occurs, the motion jumps to a different surface,
corresponding to a different orbit ( ). Nacozy’s correc-
tion scheme uses Lagrange multipliers to find the least-
squares shortest path back to the original manifold. Murison
(1988) has applied this manifold correction to both the un-
regularized and regularized restricted three-body equations.
[Appendix Blcontains a summary of the technique.

One possible flaw in this approach is that the path taken
back to the original manifold is not exactly the same one by
which the system left it. So, even though the manifold on
which the motion takes place remains constant to a very high
degree of precision during a calculation, the actual orbit
after each correction is not exactly the same one as before.

If, after a correction has been made, the resulting devi-
ation on the manifold from the true orbit path is random,
and if these random deviations are all small, then the calcu-
lated orbit will always closely follow the true orbit (‘“‘true
orbit” = *“‘orbit calculated with infinite precision”). How-
ever, if the resulting deviations are systematic, then the cal-
culated orbit will eventually diverge from the true orbit. This
could arise if the errors themselves are systematic. Then,
taking the shortest path back to the manifold will produce a
systematic component to the errors, and sooner or later the
calculated and true orbits will diverge significantly.

As usual in situations like this, one depends on the fact
that the corrections are exceedingly small so that, even over
the course of a long integration, the difference between the
orbit one calculates and the true orbit is negligible. In the

F1G. 1. Original manifold M. A numerical error occurs at P, sending the
orbit path to a new manifold M.

circular restricted three-body (CRTB) test orbits used here,
corrections were made whenever the difference between the
current and initial Jacobi constant was nonzero. In practice,
this means that C was kept constant to a precision of roughly
10~ '®. This is 6-10 orders of magnitude more precise than
previous CRTB calculations (see, for example, Huang and
Innanen 1983; Carusi ef al. 1983; Heppenheimer and Porco
1977; Horedt 1976; Byl and Ovenden 1975; Heppenheimer
1975; Benest 1971, 1974; and Hunter 1967a,b).

A more rigorous statement of this argument is as follows.
Let I" be the set of points defined by the true orbit, and let T’
be the set of points defined by the computed orbit. I lies on
the manifold M defined by the constraint, Eq. (2). That is,

I ={I'(9)|6eR'}C M,

where the function I' () is the infinitely precise solution of
[Egs_ (T} Define a small neighborhood U of . Furthermore,
define the set of points ¥,

y={r(6.¥)|(6,¥)eR'XR'}CU,

where ¢ is a winding number. Let y be such that for any
given 6 (and ¢¥) the distance between y(6,¥) and I'(9)

l7(8.4) — T (O] =7,

where 7 is a small nonnegative constant. That is,  is a cylin-
drical tube of fixed radius 7 centered on I'" and contained in
U. Now, if the condition
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F1G. 2. (a) Condition for sufficient accuracy: the computed orbit I'' is
always closer to the true orbit I' than some fictitious set of points ¥, which is
a fixed distance 7 from I'". The set y is a cylindrical tube surrounding I'; for
clarity, only the upper intersection with the page is shown. (b) The comput-
ed orbit I'’, which initially coincides with the true orbit I', is represented in a
piecewise continuous fashion by dots at each step in 8. The plane of the page
represents the manifold M. An error occurs at Q, sending the next point
(not shown) of I'’ off of M. At the next step, manifold correction returns I'’
to M at the point P, which lies at a distance d from P, the point to which I’
would have gone had there been no error. The distance d is less than the
radius § of a circle on M (see the text). The area bounded by the circle
represents the set S.
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IT'(6) —T (&) <n, VoeR' (3)

is satisfied, then the computed orbit I’ C U for all 8. In other
words, if Eq. (3) is true, then I'' is constrained to accurately
follow T at all times (see ).

Now, when a numerical error occurs, "' leaves M. At the
next step, the manifold-correction (MC) algorithm makes
an appropriate correction to bring I'” back to M. Let PCM
be the point on M to which I'" would have gone if no error
had occurred, and let P’ C M be the actual point to which the
MC algorithm returns I’ (. The flaw mentioned
above has the consequence that, in general, P'#P.

Let the distance on M between P’ and P be called d. As-
sume that d is never larger than some number § < 7. That is,

d<t<m, V6eR'.

Let SC M be the set of points contained by the circle on M
centered on Pand of radius £ (refer to Fig. 2(b)). Then, if the
calculated return point P’ is randomly distributed on S, con-
dition (3) holds, and I’ C U for all 6. If, however, P’ is not
randomly distributed on S, then it is likely that I"’ will drift
out of U in a finite number of integration steps.

In practice, £ appears to be extremely small, especially
with acorrection occurring at nearly every step. So, evenif P’
is not randomly distributed on S, any drift across Uis so slow
that for all practical purposes I'" =T'. A further study to
determine the size of {, the average size of d, and the distribu-
tion of P’ on S would be interesting, but it is not attempted
here.
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b) Regularization

One can also make coordinate transformations in the
equations of motion in order to find a representation that
will integrate more quickly and/or accurately. In typical
problems, the major source of error is close approaches. This
is because of the 1/7 terms in the gravitational potential; a
small error becomes magnified for small r. If we makea 1/r
transformation of the coordinates and time (known as local,
or Levi-Civita, regularization—see Szebehely 1967; Stiefel
and Scheifele 1970; Bettis and Szebehely 1971; Murison
1988), then the »~* singularity in the force terms disappears.
[Appendix A]contains a brief summary of the specific equa-
tions used here for the restricted three-body problem.

When these transformations are incorporated, calcula-
tions speed up by a factor of roughly 1.5-3, depending on the
particular orbit. Even more important, the character of error
behavior is greatly improved over the “real” coordinate cal-
culations.

Fortunately, it is also possible to incorporate the mani-
fold-correction scheme of Nacozy into the CRTB regular-

ized equations. The details of this are shown in

(see also Murison 1988).

¢) Test Orbits

To illustrate the usefulness of these techniques, the orbit
shown in [EFig._3 was integrated several different ways. This
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FIG. 3. Test orbit used for the
calculations of Figs. 4-6.
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orbit is difficult in the sense that it has many close ap-
proaches to ».,. The integration continued for 40 orbital
periods of the primaries. In each case except the first, an
effort was made to keep the amount of machine work the
same.

During the integration, the error in the Jacobi constant
AC was monitored. A measure of the accumulated error is
also useful in characterizing the accuracy of an orbit. Thus,
the quantity C defined by

C=J‘|AC|dt

was also monitored.

The curve labeled “RK” in shows the error in C
during an integration that used an efficient, fourth-order
Runge-Kutta (RK) method with variable step size. Notice
the steady increase of error with time. The cpu time needed
by a VAX 11/780 was 2522 s. The value of C was
2.13X 107 '°. The curve labeled “BS” shows the same calcu-
lation, this time using the BS method. Discrete jumps are
caused by close approaches, and are often larger than those
in the RK case. However, the cpu time required was more
than a factor of 10 less (242 s). The value of C was
3.22X 107 '2. Thus, the BS method is both more accurate
and much faster than RK.

shows the effect of manifold correction (MC).
The BS method was used again, and whenever an error in C
occurred MC was used at the next step. Notice the drastic
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collapse of the errors. What would have been a large jump in
C is reduced to a narrow spike. Yet there was no increased
cost in cpu time (241 s)! Here, C dropped over two orders of
magnitude, to a value of 2.23 10714,

To illustrate the effect of regularization, [Fig._ 6jshows the
result of using the BS method without manifold correction
but with regularized equations of motion (the curve labeled
“BS + R”). Note that the vertical scale has been magnified
by a factor of 1000. The errors are extremely small, com-
pared to the previous figures. This is a result of keeping the
amount of machine effort about the same (cpu time was 235
s). Notice that the character of the error behavior has also
improved: instead of relatively large jumps, as in the BS
curve of [Fig. 4] the errors are a combination of spikelike and
steady drift behavior. C was, in this case, 2.82x 10~ 15,

Finally, the curve labeled ‘“BS 4+ MC + R” shows the re-
sult of combining the BS method, regularization, and mani-
fold correction. The cpu time required was 236 s. Again, the
cost of MC was negligible. The errors have been reduced to
effectively nothing, with a net savings of cpu time, compared
to the BS method alone. Notice that the maximum error that
occurredisonly AC = 3.4 X 10~ ', compared to 2.1 X 10~ '
for BS alone. Also, C was a very tiny 1.57 <10~ "7,

Thus, we conclude that the BS method of integration is
very fast, and, when combined with regularization and espe-
cially manifold correction, extremely accurate. Regulariza-
tion significantly stabilizes the method. We also note the
importance of regularization and the small cost of manifold
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tions.
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duction of errors (compare with Fig.
4).
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correction (in general, the author has noticed the cost to
vary between approximately 0% and 3% in cpu time). Table
I summarizes the results. Notice that the combination of
manifold correction and regularization has decreased C by
more than five orders of magnitude. Regularization alone
decreased C by over three orders of magnitude. The maxi-
mum error has been decreased by over four orders of magni-
tude.

III. BACKWARDS-INTEGRATION CHECK

In order to further check the accuracy of the BS integra-
tor, and also BS combined with regularization, four different
orbits were integrated forward for one hundred revolutions
of the primaries and then backward to T'= 0 again, once
with unregularized equations of motion and then again with
regularized equations. The start and end values of the co-
ordinates were then compared. A forward-integration time
of one hundred primary revolutions is not exceedingly large,
but it is long enough to obtain a quantitative illustration of
the kinds of errors and under what conditions they occur.

The four test orbits consist of the *“‘easy” orbit of|
which has no close approaches and zero eccentricity for the
primary motion (e, = 0); an orbit very similar to the one of
Fig. 7(a), but with a finite eccentricity for the primary mo-
tion of e, = 0.0482 (that of the Jupiter-Sun system); the
orbit of [Fig-7(bY, which has many close approaches, but the
primary eccentricity is zero; and the orbit of [Fig. 7(c)}, simi-
lar to that of Fig. 7(b), except that now e, = 0.0482 again.

25
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o
[

These will be referred to as cases 1-4, respectively. Figure

7(d)|shows the distance from -, as a function of time for the

orbit of (case 4). The many close approaches make
this orbit, and the one of]| difficult tests of the inte-
gration method, especially for unregularized equations.

Most integrators with adjustable step size have an accura-
cy parameter which determines the relative accuracy of an
integration. We shall call this parameter €. One would expect
that for small € an integration would be accurate and believa-
ble, and that as € is increased, eventually a point is reached
where the errors are so large as to make the integration
meaningless—the global character of the orbit is altered.
Each of cases 1-4 were repeated for many different values of
€; for our specific example of BS integrator (essentially that
of Press et al. 1986), € ranged from 107° to 105,

A good indicator of whether, after a backwards inte-
gration, the character of an orbit has changed or not is Ax,
the error in the x position of the orbit (Ay would probably
work just as well). Other possible indicators include the er-
ror in energy AE and the error in phase-space position,

Ar, = /(Ax)* + (Ap)? + (Av,)” + (Auv,)”. [Figure 8(a)|
shows the log of AE plotted against the log of Ax, for the
orbit of case 1. shows the log of Ar, plotted
against the log of Ax. We see that the correlation between AE
and Ax is very good. Thus, the error in energy is a good
indicator of whether or not the character of an orbit trajec-
tory is changing. The correlation between Ar, and Ax ap-
pears to be a bit more ragged.
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JACOBIAN CONSTANT ERROR

F1G. 6. Error in Jacobi constant ver-
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The results of the backward integrations are shown in
Figs. 9-12. In Fig. 9 is case 1, the “easy” orbit with e, =0,
first with unregularized equations of motion (Fig-9(a}), and
then with regularized equations (Eig_9(b)). Plotted is the
error in x versus forward-integration time in units of the
primary period. Each trace corresponds to a different value

of the accuracy parameter €, which varied in uniform steps
of log €.[Figures 10-12lare similar, for cases 24, respective-
ly.

There are several effects to note. First, we look at those
due to regularization. As can be seen, for the “‘easy” orbits
(cases 1 and 2), regularization improves the accuracy of the

integration, as measured by Ax, by a factor of roughly 30-
100. For the “difficult” orbits (cases 3 and 4), regularization

TABLE I. Summary of Figs. 4-6.

Case [1ac| at lac| CPU (sec)
RK 2.13x10°1°%  2.22x107"! 2522
BS 3.22x10"'%  2.08x10” ! 242
BS+MC 2.23x107'*  1.15x107"* 241
BS+R 2.82x10°'°  1.88x107*3 235
BS+MC+R  1.57x10"'7  3.44x10"'¢ 236

Bulirsch-Stoer and  regularized
equations. BS + MC + R is a com-
bination of Bulirsch-Stoer, manifold
correction, and regularization. No-
tice the factor of 1000 change in
scale.

Lliaa

! Hl

improves the accuracy by a factor of approximately 1000.
Note that for larger values of €, the regularized integrations
are of relatively poor accuracy for cases 3 and 4. The limit of
highly accurate integrations appears to be approximately
€=10"""* when regularization is used. For € greater than
this cutoff, the errors in x position are (relatively) large and
erratic when compared to integrations for which ¢ is smaller
than the cutoff. This is seen inm When
there are no close approaches (E]gs_&(_b_)_a,n.d_l_Q_LbJ), the
regularized integrations are well behaved.

In addition to providing higher accuracy, regularization
can also reduce the cpu time required. For cases 3 and 4, the
cpu time needed to perform the unregularized calculations
ranged from 50% to 70% more than that needed for the
regularized calculations. On the other hand, for cases 1 and
2, the regularized calculations took 12%-18% longer.
Therefore, cpu savings results during close approaches. In
every case though, the regularized calculation was much
more accurate.

It should be pointed out that in none of the cases did Ax
exceed 3 X 107>, Thus, the BS integration method appears to
be quite good in general—at least for integration times of one
hundred primary periods or less for the restricted problem
with close approaches.

Also very significant are the effects due to eccentricity of
the primary orbit. When regularization is not used, the
ep = 0 orbits (cases 1 and 3) are more accurate than the
ep #0 orbits (cases 2 and 4) by factors of roughly 10°. When
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Author's note
Figure 7a
The "easy" orbit.

Author's note
Figure 7b
Many close approaches, with eccentricity of the primaries equal to zero.
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Author's note
Figure 7c
Many close approaches, with eccentricity of the primaries equal to that of the Jupiter-Sun system.
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FIG. 8. (a) log of AE plotted against the log of Ax, for the
orbit of case 1. (b) the log of Ar,, plotted against the log of
Ax.
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orbit is that of Fig. 7(a) (case 1). (a) Unregularized equations and
(b) regularized equations.

regularization is incorporated, the e, = O orbits are more
accurate by a factor of ~ 10! for the difficult orbit and ~ 10°
for the easy orbit. Thus, even a small eccentricity such as
ep = 0.048, corresponding to the Jupiter—Sun system, dras-
tically affects the accuracy of the integrations.

In addition, one can see that Ax is increasing much more
rapidly with increasing forward-integration time for the
ep 70 orbits than for the e, = 0 orbits. We have, very rough-

ly,

log Ax:——l— T + const., e, =0,
100
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F1G. 10. Same as in Fig. 9, except for the orbit of case 2 (similar to case
1, but with nonzero primary eccentricity).

log Ax:—~5—— T + const., e, = 0.048.

100
The slopes seem to be approximately independent of
whether or not regularization was used. The eccentricity of
the primaries is certainly the major effect.

Itis tempting to use the slopes of the traces in Figs. 9-12 to
predict upper bounds for forward-integration time. For
example, based on an extrapolation of [Fig. 11(b)| for
€ = 10", we would expect Ax to be roughly 10~ after a
forward and then backward integration of about 1100 pri-
mary periods. Yet, an actual calculation yields Ax = 10~ !'#


Author's note
Figure 9b
"Easy" orbit integrated with regularized equations.

Author's note
Figure 9a
"Easy" orbit integrated with unregularized equations.
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F1G. 11. Same as in Fig. 9, except for the orbit of case 3.

instead. To take another example, from we would
expect Ax to be 1072 after a forward and then backward
integration of about 230 primary periods, with e = 10~ ',
Yet, after an integration 1400 primary periods forward and
then back, Ax was still only 1032, Thus, it seems that pre-
dictions of maximum integration time based on Figs. 9-12
are not at all reliable, and calculations are indeed trustwor-
thy for much longer times.

V. CONCLUSIONS

We see that the BS extrapolation method is indeed very
fast, and by itself also fairly accurate. Errors are on the same
order of magnitude as those produced by the ever-popular
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FIG. 12. Same as in Fig. 9, except for the orbit of case 4.

Runge—Kutta, but integrations proceed about an order of
magnitude faster. Regularization of the equations of motion,
besides having the well-known properties of making close
approaches possible to calculate and reducing machine ef-
fort, also significantly stabilizes the BS method’s error be-
havior. The manifold-correction scheme of Nacozy (1971)
can reduce the errors to effectively zero (the limit being set
by the word size of the machine), and at the surprisingly
small cost in cpu time of 0%-3%, depending on the orbit.
Unfortunately, its implementation depends on the existence
of at least one integral of the motion. Finally, in the specific
case of the restricted three-body problem, we found that
nonzero eccentricity of the primaries significantly reduces
the accuracy of integrations, compared to the circular case.
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The BS method currently is used by several workers, for
whom it seems to be a good method, at least for small N
dynamical systems. Here the author hopes to have shown
that the method is indeed as good quantitatively as it seems
qualitatively, and that current users of the method can feel
reassured. The author also hopes that this discussion will
convince others who are currently using or plan to use other
methods that they may profit considerably by considering
BS and Nacozy’s manifold correction (if it can be applied).
These methods are also attractive in that they are easy to
code and implement.

The author thanks Arthur D. Code, Marc Balcells, and
Barbara A. Whitney for encouragement, criticisms, and
support. He also thanks the anonymous referee for some
very constructive criticism. Extensive allocation of comput-
ing resources was granted by the Midwestern Astronomical
Data Reduction and Analysis Facility (MADRAF); many
thanks go to Christopher M. Anderson for such consider-
ations. This work is part of the author’s Ph.D. research, and
was supported in part by NASA contracts nos. NASS5-26777
and 65B-580912.

APPENDIX A: REGULARIZATION
a) The Equation of Motion

The equations of motion (1) can be transformed via the
Kustaanheimo-Stiefel transformation (Kustaanheimo and
Stiefel 1965; also Stiefel and Scheifele 1970; Bettis and Szebe-
hely 1971) into regularized form.

The transformation is as follows. Introduce a new set of
coordinates (dependent variables) o = (w,,w,)” and a new
“time” (independent variable) 7, such that

x=W(w»),

dé

A , Al)
i a(w) (

where x = (x +u,p)" or x = (x — 1 +u,p)”, depending
on whether r, or 7,, respectively, is the regularized quantity,
@ is the true anomaly of the primaries, and W and a are

W, =w} — o},

W, =2wuw,,

a(w) =y=W(o).
Sundman (1912) used this form for a, and it came to be
known as Sundman’s transformation for the independent
variable. It can be shown that this type of regularization can
be performed in two or four dimensions, but not three (Stie-
fel and Scheifele 1970). Thus, W is four dimensional for the

case of three spatial dimensions (see Stiefel and Scheifele
(1970) and Bettis and Szebehely (1971)).

1) Elliptic case

The regularized form of Egs. (1) can then be written (see
Murison 1988)

o - L Ho=Lwg,
2 2

H’=2m’-G—d—f,

A2
46 (A2)

0'=Ww,

where H is an auxiliary variable related to the energy, and a
prime denotes differentiation with respect to 7. Also, it is
convenient that W= o+ ® = w? 4 3. The function f(8)
is

1 —u
__.—, :r
1+4e,cos@ X !

f16) =
—._—, :r
1+e, cosd X 2

The vector G is
G, =4w; + h(Dk,,

G,= — 4w + h(O)k,, (A3)
where the components of k are

k=0 {(W—-1[1—(u/r)] +1—pu},

k=0 {(W+D[1— ()] —1-w}, (A4
if r, is being regularized, or

k=0 {(W+D[1 -1 —-w/r]—u},

ky=w,{(W—-1D[1— 0 —p)/r]+u}, (A5)

if r, is being regularized. The function 4(0) is
1

h() = — .
1+e, cosd

2) Circular case

When the eccentricity of the primaries is zero (the circu-
lar restricted case), the planar regularized equations of mo-
tion simplify to

o - (U-10e=1iWG,

=W, (A6)
where C is the Jacobi constant (Eq. (2)), U'is
H(x? 2 =
_ {2(x2+y2) + (u/ry), X=r (AT)
x*+y)+ A =pw)/r, x=n

and the components of G are now
G, =40 + k,,
G2 = - 4(0; + kz .

b) Initialization of the Regularized Variables

At the beginning of an orbit calculation, the initial condi-
tions will usually be specified in “normal”-space coordi-
nates. Thus, we need to be able to set the regularization vari-
able values when given the normal-space values. That is, we
need the transformation whose inverse is [Egs. (A1) In two
dimensions, we have

X+ u, =r
lz{x ;1t+,u i—r‘ =oi -0,
— , =r,
Y=y =20 0w,, (A8)
and the first derivatives,
, d 1 d 2 ,
X1 Z—-d/‘; =W_;;I =W((01‘9| W03 ),
’ 2 ’ ’
X2 =W(w|(02 + W) . (A9)

If we add and subtract Egs. (A8) to and from @+
= W =y, we find
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0 0+y =20,
00—y =20 .

Thus, it must be true that

0 =t Xﬂz'/—', W, = + L_ZXJ—

The question now arises of which signs for @, and w, do we
choose. The problem stems from the fact that the regulariza-
tion space is double valued. That is, the four quadrants of the
x-y plane are mapped into eight regions in the w,—w, plane
(Szebehely 1967). Because of this duplicity, we are free to
choose. When y > 0, then, from Eq. (A8), o, and w, must
both be of the same sign. We will arbitrarily choose the posi-
tive. When y <0, then w, and w, are of opposite sign. We will
arbitrarily choose the negative for w, and the positive for ,.
Thus, we have the starting value convention

2
W, =
- X%’_ly ¥2 <0,
a)2=_+_ X%/_'

Now we determine the initial regularized velocities ]
and w}. From Eq. (A9) we write
Wy! =00 —w,0;,

IWy; = 00 + 0,0 .

Use these to construct the combinations
W0, xi + ox;) = (0] + 0))o] = Waoi,
Wi (o, x; — o) = (0] +0})o; = Woj .

Thus, once we have determined the initial values of @, and
@5, the initial values of | and w; can be determined from

o =io ¥ to,x3),

0 =Hw, x; —o 1) -
Finally, we assign the initial value of H as follows,
1

R ()
H=—x x -2,
2 XX T Ty

where ' = d x/d6.
For a more thorough discussion, see Murison (1988).

APPENDIX B: REGULARIZED MANIFOLD CORRECTION
a) Manifold Correction

In this Appendix, we briefly state a result of Nacozy
(1971) and apply it to the circular restricted three-body
(CRTB) problem, which has an integral of the motion (the
Jacobi constant), for both the unregularized and the regular-
ized forms.

At a particular instant in time, let the computed state vec-
tor be § and the corresponding ideal (i.e., infinite precision)
state vector be x, where

x

§ ’ xl

E= 77, and x= y,
n y

4 z

’ zl

E contains numerical errors and must be corrected to get
back to the ideal, error-free state vector x. Let the correction
vector be €, such that

E+e=x.

Define a constraint function ¢(x) to be the energy constant
of the system. In the case of the circular restricted three-
body problem, we use the [facobi constant relation (2 ),

d(x)=v:—-2Q+C=0, (B1)

where v’=x"? + y'?, Then, from Nacozy (1971), we can
compute the components of the correction vector according

to
J

d¢
€ =|—¢(E)/ ‘———
R
where for notational convenience the derivatives are inter-
preted in the following sense:

(B2)

d¢ _ d¢

g ox
and

¢ _ 9¢

%, oxle

Differentiation of ¢ is with respect to the x; evaluated at £,. It
is not tobeinterpreted as the derivative with respecttothe ..
:m gives the components €,, which, when
added to the computed state vector &, give

$(x) =0
to order |€|% In addition, the ¢; have been chosen so that the
length of the correction vector squared is minimized.
Geometrically, the vector € is normal to a hyperplane that

is approximately tangent to the five-dimensional hypersur-
face, defined by at the point x. Equation (B1) is

the actual hypersurface, to which

SE) + €+ g‘z ~é(x)

is a first-order approximation.
For reference, the derivatives of ¢, as given by Eq. (B1),
are

99 _ —2x+2[1;“(x+u)+i‘;(x—l+u) :
dx | o

b)Manifold Correction with Regularization

We can also use manifold correction with the CRTB equa-

tions when they are in regularized form (see Rppendix A).
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The Jacobi constant relation is, in normal space,
¥ =-20+C=0,

where

(B3)

1 1—
Q=+ ) +—L 4+ £
2 r, r;
Since Eq. (B3) is to be our constraint function, we need to
write it in the regularized variables. The “velocity” can be
written

while the effective potential can be written

[1—,‘" X=n

Q=U+— :
“ X=nr

w

where U is given by (A7). So Eq. (B3) becomes

Voo 1 —
4"’W“’ —2[U+%/( #“)]+C=o.

Thus, we write the constraint function (B1) in the form

In order to use Eq. (B2) to form the correction vector €, we
need the derivatives of Eq. (B4). Making use of the fact that
x = w? — 0} and y = 20,0,, we calculate the derivatives of
¢ and arrive at the result

g‘ﬁ—z — 2(Ho + WK)

(01

¢ — 4o, (B5)
Jo’

where H = U — 1C'is the auxiliary variable of Appendix A,
and the vector k is given by [Egs. (A4) or (A))}

A prescription for applying manifold correction to the
regularized CRTB equations of motion is as follows:

(1) Transform o to x and p and calculate U according to
Eq. (A7).

(2) Calculate the constraint function ¢ from Eq. (B4).

(3) Calculate the components of k from Eqgs. (A4) or
(AS5).

(4) Calculate the derivatives of ¢ according to Eq. (B3).

(5) Form the correction vector € according to Eq. (B2).

(6) Add the corrections to o and o’.

(7) If the equations of motion are in the general ERTB
form (Eq. (A2)) instead of the specific CRTB form (Eq.

PSP 1 1— #) _ [A8)), then H will have to be recalculated, using the new
$=20" 0" - W(U_ 2 C) - ( u /o 0. (B4) (corrected) state vector, from H = U — iC.
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